NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
1、“Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder
2、Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability of production of NMN powder
3、Industrial leading technology: 15 domestic and international NMN patents
4、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMN powder
5、Multiple in vivo studies show that Bontac NMN powder is safe and effective
6、Provide one-stop product solution customization service
7、NMN raw material supplier of famous David Sinclair team of Harvard University.
NMN powder in general is typically produced via chemical or enzymatic synthesis, or fermentation biosynthesis. There are pros and cons to all three methods.
Chemical synthesis is expensive and labor intensive, and all raw ingredients used are categorized as “unnatural,” i.e., not from biological systems. There are, however, some advantages from the manufacturer’s perspective. The yield is well suited to mass NMN powder production, and all of those unnatural raw ingredients can be carefully controlled. But there are a number of drawbacks as well. Some of the solvents used in the manufacturing process are seriously bad from an environmental standpoint, and impurities and by-products can be challenging to remove from the finished product – that’s seriously bad for the consumer.
Enzymatic production of NMN powder, on the other hand, is considered a “green preparation method.” Like the chemical route, it’s pricey, but it offers a higher yield and impressively high purity. The finished NMN ticks all the boxes – stable, easily absorbed, lightweight, low density, and a low molecular structure.
Fermentation has also been explored as a method of producing NMN, but yield, though high quality, is pretty abysmal, so many supplement companies quite sensibly look to other, more efficacious processes.
NMN was only considered as a source of cellular energy and an intermediate in NAD+ biosynthesis, currently, the attention of the scientific community has been paid on anti-aging activity and a variety of health benefits and pharmacological activities of NMN which are related to the restoring of NAD+. Thus, NMN has therapeutic effects towards a range of diseases, including age-induced type 2 diabetes, obesity, cerebral and cardiac ischemia, heart failure and cardiomyopathies, Alzheimer’s disease and other neurodegenerative disorders, corneal injury, macular degeneration and retinal degeneration, acute kidney injury and alcoholic liver disease.
Aging, as a natural process is identified by downregulation of energy production in mitochondria of various organs such as brain, adipose tissue, skin, liver, skeletal muscle and pancreas due to the depletion of NAD+ . NAD+ levels in the body decrease as a consequence of increasing NAD+ consuming enzymes when aging There are three different biosynthesis pathways to produce NAD+ in mammalian cells including de novo synthesis from tryptophan, salt and Preiss-Handler pathways. Among these three pathways, NMN is an interproduct by is involved in NAD+ biosynthesis through salt and Preiss-Handler pathways. The salvage pathway is the most efficient and the main route for the NAD+ biosynthesis, in which nicotinamide and 5-phosphoribosyl-1-pyrophosphate are converted to NMN with the enzyme of NAMPT followed by conjugation to ATP and conversion to NAD by NMNAT. Furthermore, NAD+ consuming enzymes are responsible for degradation of NAD+ and consequence nt formation of nicotinamide as a by-product.
The safety of NMN powder cannot be assessed since required clinical and toxicological studies have not been completed yet to establish the recommended safe levels for long term administration. Nevertheless, their safety and efficacy are uncertain and unreliable since most of them have not been back by Rigorous scientific preclinical and clinical testing. This issue has been arisen as manufacturers are hesitant to pay for research and clinical trials due to potential lower profit margin, and there is no authorizing agency to regulate NMN products because it is often product sold as functional food than heavily regulated therapeutic drug. Therefore, more strict approval process has been demanded by consumer advocacy groups requesting regulatory agencies to set standard and restrictions for marketing anti-aging health products, considering safety, health and wellbeing of N red besumers. a panacea for the elderly, because boosting NAD levels when not required may yield some detrimental effects. Therefore, the dose and frequency of NMN supplementation should be carefully prescribed depending on the type of age-related deficiency and all other confronting health conditions of the people. Other NAD precursors over have been studied to diverse age-related deficiencies and they are used for particular deficiencies, only after they are proven for effectiveness and safe to use. Therefore, the same principle should be applied to NMN as well
First, inspect the factory. After some screening, NMN companied that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NMN powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMN cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NMN powder produced by Bontac reach the purity of 99.9%. Finally, a professional test spectrum is needed to prove it. Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound ca n be preliminarily determined.
Introduction Oxidized form of nicotinamide adenine dinucleotide (NAD+) and its precursor nicotinamide mononucleotide (NMN) have been uncovered to restore DNA repair and prevent cancer progression via the deleted in breast cancer 1 (DBC1). This research is committed to deciphering the detailed molecular mechanisms. About DBC1 DBC1 is a nuclear protein initially cloned from a human chromosome 8p21 region, which can modulate diversified targets by protein-protein interaction, contributing to various cellular processes such as apoptosis, DNA repair, senescence, transcription, metabolism, circadian cycle, epigenetic regulation, cell proliferation, and tumorigenesis. The affinity and molecular binding mechanisms between NAD+/NMN and DBC1354–396 Under the help of nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments, it is verified that both NAD+ and NMN have a binding relationship with the NHD domain of DBC1. Specifically, NAD+ interacts with DBC1354-396 through hydrogen bonds, with a binding affinity (8.99 μM) nearly twice that of NMN (17.0 μM) and the key binding sites are primarily residues E363 and D372. The vital roles of E363 and D372 mutagenesis in ligand-protein interaction The N-terminal loop of DBC1354-396 encloses the small ligand within a local space, anchoring NAD+ and NMN to the protein through key amino acid residues E363 and D372 via hydrogen bonding. Conclusion Both NAD+ and its precursor NMN can bind to DBC1's NHD domain (DBC1354–396) at key sites E363 and D372, providing novel clues for the development of targeted therapies and drug research on DBC1-associated disease including tumors. Reference Ou L, Zhao X, Wu IJ, et al. Molecular mechanism of NAD+ and NMN binding to the Nudix homology domains of DBC1. Int J Biol Macromol. Published online February 12, 2024. doi:10.1016/j.ijbiomac.2024.130131 BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction Cardiovascular diseases (CVD) poses huge economic burden and great threat to the life of patients, even surpassing Alzheimer's disease and diabetes. 17.9 million people in the world die from CVD, with indirect treatment costs of $237 billion per year, which are projected to increase to $368 billion by 2035. It has been reported that the deficiency or imbalance of oxidized nicotinamide adenine dinucleotide phosphate (NADP+)/reduced nicotinamide adenine dinucleotide phosphate (NADPH) redox couple has been linked to a variety of pathological conditions including CVD. NADP(H) redox couple as cofactor/electron carrier in cardiommyocytes NADPH is an essential cofactor of glutathione reductase (GR) and thioredoxin reductase (TRs) in cardiommyocytes, with a crucial role in maintaining cellular redox homeostasis and energy metabolism. GR catalyzes the recycling of Glutathion (GSH) from oxidized glutathione (GSSG), and TRs reduces oxidized Trx-S2 into Trx-(SH)2. Simultaneously, both enzymes require NADPH as an electron donor and oxidize it to NADP+. Once O2•− is formed, for example, from NOXs in the cytosol and from mitochondrial electron transport chain (ETC), cytosolic CuZnSOD and mitochondrial MnSOD will reduce it to H2O2. GSH can be used by glutathione peroxidase (GPx) to reduce H2O2 further to water. Trx-(SH)2 provides reducing equivalents for Prx in the removal of H2O2. The connection of NADP(H) with cardiovascular pathologies NADP(H) plays a dual role in cardiovascular pathologies. On the one hand, the reduced NADPH can result in significant antioxidant deficiencies and intracellular accumulation of free radicals, which triggers lipid peroxidation, inflammation, and vascular dysfunction, ultimately exacerbating the course of atherosclerosisoxidase. On the other hand, high NADPH level can give rise to myocardial injury by inducing reductive stress and enhancing reactive oxygen species (ROS) production. Conclusion Changes in cellular NADP(H) content affect the intermediary metabolism of cardiac function, especially in diseased myocardium. Maintaining the balance between NADP+ and NADPH in cardiommyocytes is critically important for the treatment of CVD. Either deficiency or excess NADP(H) levels can lead to imbalances in cellular redox state and metabolic homeostasis, resulting in energy stress, redox stress, and ultimately disease state. NADP(H) has an important therapeutic value in CVD. Reference Sun Y, Wu D, Hu Q. NADP+/NADPH in Metabolism and its Relation to Cardiovascular Pathologies. Curr Med Chem. Published online February 16, 2024. doi:10.2174/0109298673275187231121054541 BONTAC NADP(H) BONTAC has dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NADP(H). Bonzyme whole-enzymatic method is adopted, which is environmental-friendly, with no harmful solvent residues. The purity of NADP and NADPH can reach up to 95% and 98%, respectively, which is benefited from the exclusive Bonpure seven-step purification technology. BONTAC has self-owned factories and has obtained a number of international certifications, where high quality and stable supply of products can be ensured. BONTAC has four domestic and foreign NADPH patents, leading the industry. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction On April 24th 2024, BONTAC was invited to participant in the 26th Health Food Ingredients/OEM Expo (ie. Health Food Expo, Ingredients and Contract Manufacture) in Tokyo International Exhibition Hall E1, Japan. This exhibition achieved full success. About Health Food Ingredients OEM exhibition Health Food Ingredients/OEM Expo is one the of Japan's only exhibition specializing in BtoB in the realm of health food ingredients and OEM, which is held in world-famous Tokyo International Forum. The name of this exhibition was switched from “International Health Ingredient Seminar & Expo” in 1998 to “Functional Food Expo” in 2002, and then changed to “Health Food Expo, Ingredients and Contract Manufacture” for further specialization of this event. Notably, there are more than 10,000 visitors attending the Health Food Ingredients/OEM Expo in Japan this year. Keynote speech by the BONTAC founder As a special guest, Dr. Cheung, the chief scientist and founder in BONTAC, delivered a keynote speech titled “Independent Wholechain Technology for Coenzyme Synthesis” in this exhibition, wining the high praise from the audiences on the spot. Dr. Cheung shared how BONTAC broke through the bottleneck of coenzyme synthesis technology to realize the independent control of the whole chain from raw material screening, enzyme engineering modification to industrialized production. The coenzyme synthesis technology independently innovated by BONTAC not only greatly improves the purity and stability of coenzyme products, but also effectively reduces the production cost. Dr. Cheung highlighted the important role of scientific research and innovation in promoting industrial progress. BONTAC Vision In the future, BONTAC will continue to be committed to scientific and technological innovation, through the independent control of the whole chain, to provide consumers with higher quality and more cost-effective health food raw materials, aiming to create a healthier and better life for human beings.